Plutonium Speciation in a Salt-Base Repository

Donald T. Reed Michael K. Richmann Marian Borkowski

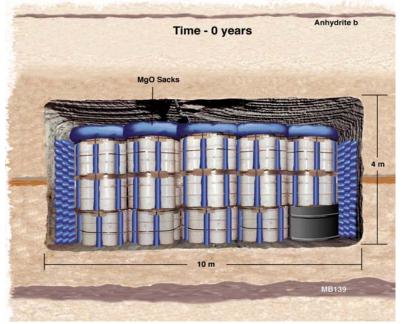
Earth and Environmental Sciences Division, Los Alamos National Laboratory Carlsbad Operation, Carlsbad NM

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

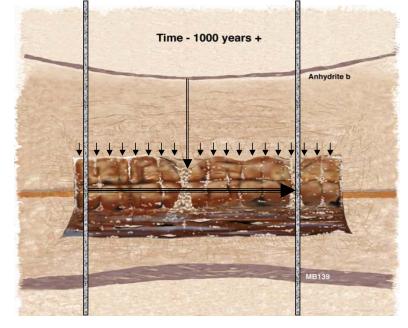
Contents

- Repository Conditions and Inventory
- Summary of WIPP-Relevant Results
 - Plutonium Microbial Reduction
 - ANL Pu (VI) Reduction by Iron in WIPP Brine
 - LANL/ACRSP Study to Re-evaluate this Study Extended to Fe Oxides
- Pu(VI) Reduction
- Pu(III) and Pu(IV) Speciation
- Pu(III) and Pu(IV) Solubilities
- Conclusions



UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting


WIPP Disposal Room in a Time of Closure and 1000+ Years Later

View of the WIPP Disposal Room

Courtesy of Frank Hansen, SNL

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Total amount of key waste components and actinides present in WIPP

	Panel 1 (actual)	Panel 2 (actual)	WIPP (projected)
Radionuclide	Amount (kg)	Amount (kg)	Amount (kg)
Am-241	34.6	9.2	143
Pu total	2 571	1 405	9 727
Pu-239	2 416	1 306	9 210
U total	22 323	6 850	647 000
U-238	22 170	6 808	645 000
Np-237	0.6	1.2	17
Material			
Iron based metal, alloys	3 327 871	4 922 035	51 416 440
Aluminum based alloys	5 459	17 730	2 234 176
Other metals, alloys	46 793	121 526	5 795 048
MgO	4 482 355	6 667 625	83 191 744
Cellulosics	706 141	477 213	10 174 884
Plastic	522 688	876 399	10 187 628

NATIONAL LABORATORY

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Summary of Current WIPP Chemistry Model

Geochemistry	Predominantly pure halite Salado formation salt with anhydrite interbeds	
Temperature	Ambient is 28°C, an increase of up to 3°C is possible due to the emplacement of TRU waste, Humidity ~70% RH at the repository temperature	
Water Content	Unsaturated for short period of time. Ambient brine inclusions in the salt range from 0.1 to 0.2 % by mass	
Pressure	~15 MPa (147 atm) lithostatic, ~ 8 MPa (79.0 atm) hydrostatic in a borehole intrusion scenario	
Gas Phase	Initially air at repository closure, but rapidly transitions to an anoxic atmosphere dominated by hydrogen and carbon dioxide with trace-levels of methane, H ₂ S and other microbial generated gasses at pressures up to lithostatic	
Minimum brine volume for DBR	The calculated minimum volume of brine, from any source, needed for DBR release is 10,011 m ³ WIPP	

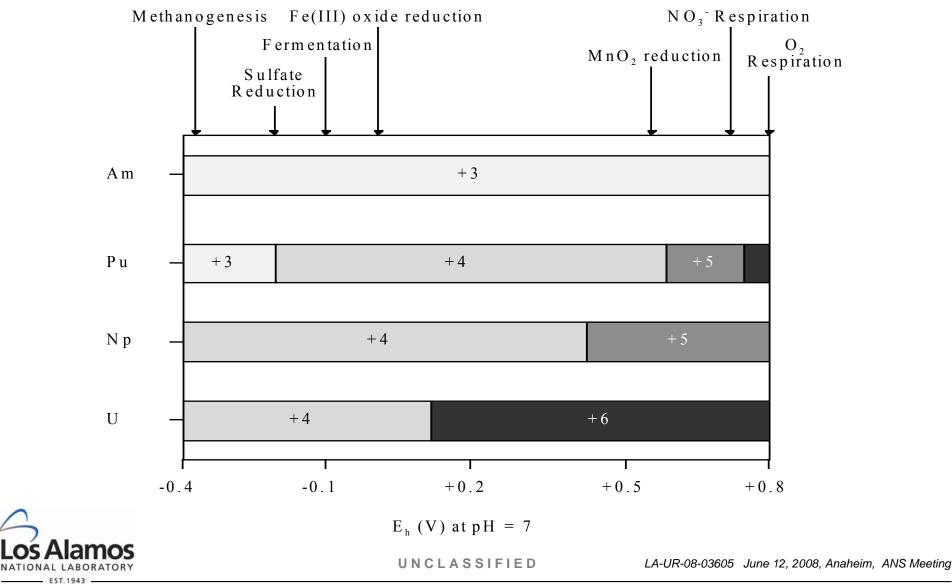
UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Summary of Current WIPP Chemistry Model			
Brine	Brine High ionic strength brine that is bracketed by GWB and ERDA-6 brine formulations; pH = 8.7; buffered by MgO		
Engineered Barrier	MgO will sequester carbon dioxide and buffer pH by the precipitation of brucite, hydromagnesite, and magnesite.		
Microbial Effects	Gas generation, primarily carbon dioxide also methane and hydrogen sulfide, due to the biodegradation of cellulosic, plastic and rubber (CPR) materials.		
Corrosion	Container steel will react to remove oxygen and produce hydrogen.		
Radiolysis	Localized oxidizing effects possible near high-activity actinides, but overall radiolytic processes will be overwhelmed by the reducing components.		

Relevant Redox Half Reactions

Table 3-1. Redox Half Potentials for Key Fe, Pb, Pu and U Reactions			
Half Reaction	E _o (Acidic) in V	E_o at pH = 8 in V	
$Pb^{4+} \rightarrow Pb^{2+}$	1.69	2.47	
$PuO_2^+ \rightarrow Pu^{4+}$	1.170	0.70	
$PuO_2^{2+} \rightarrow PuO_2^+$	0.916	0.60	
$Fe(OH)_3(s) \rightarrow Fe^{2+}$		0.1	
FeOOH (s)→FeCO ₃ (s)		-0.05	
$\mathrm{UO_2}^{2^+} \rightarrow \mathrm{U}^{4^+}$	0.338	-0.07	
$Pu^{4+} \rightarrow Pu^{3+}$	0.982	-0.39	
$Pb^{2+} \rightarrow Pb$	-0.1251	-0.54	
$Fe^{3+} \rightarrow Fe^{2+}$	0.77	-0.86	
$Fe(II)(OH)_2 \rightarrow Fe(0)$	-0.44	-0.89	
$U^{4+} \rightarrow U^{3+}$	-0.607	-1.95	



UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Relationship Between Redox, Oxidation State and Microbial Ecology

Bioreduction of Pu(V) by Shewanella Alga

- Pu(V) reduction expected by metalreducing bacteria – Pu(III) can be formed
- Pu(IV) Pu(III) reduction reported by Boukhalfa et. al., also noted Pu polymer solubilization and reduction noted

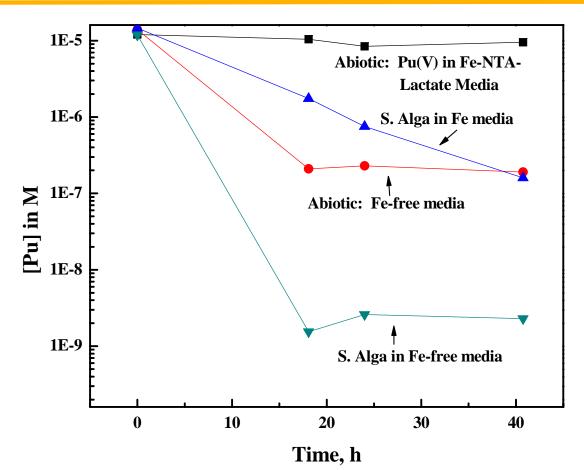


Figure 8. Bioreduction of higher-valent plutonium by *Shewanella* alga BrY under anaerobic conditions in the presence and absence of iron. Uncertainty in the plutonium concentration data is $\pm 10\%$.

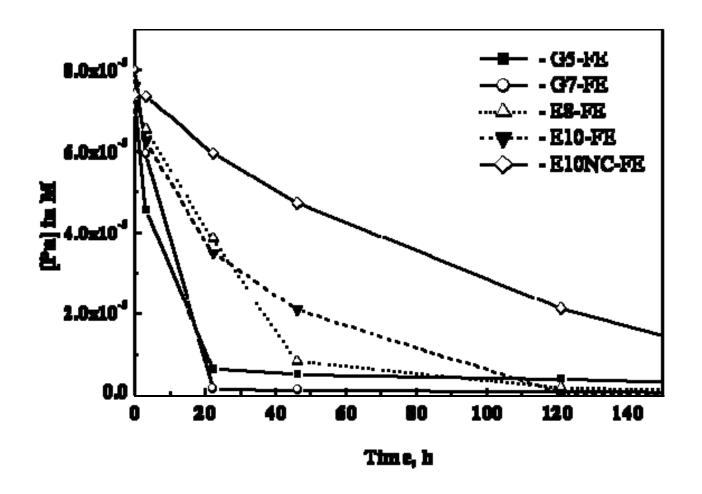
UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

ANL Experimental Matrix: Pu(VI) Reduction Studies

- pC_{H+} 5-10
- Pre-equilibrated systems, with and without carbonate
- G-SEEP and ERDA-6 brine
- Fe coupon, Fe²⁺ and MgO

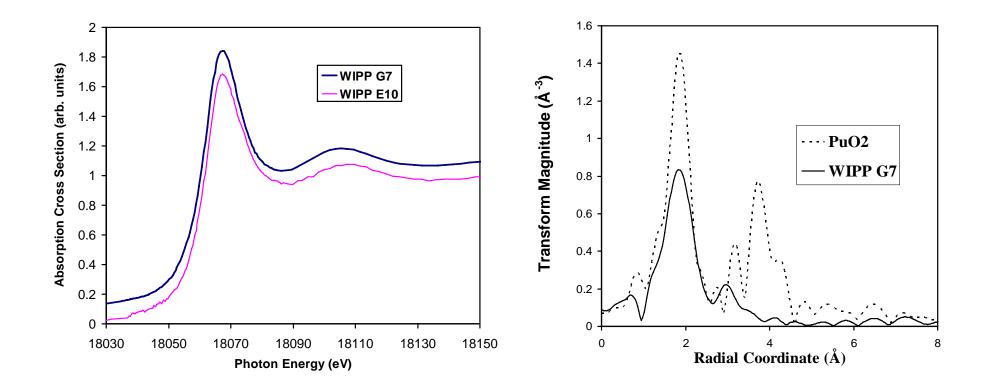
Operated by Los Alamos	National Security,	LLC for NNSA
	, tallorial occurry,	


Table 4.1-1. Experimental Matrix to Determine the Stability of Pu (VI) in Brine ^a			
Pu(VI) Stability Experiments		Pu(VI) Interaction Studies	
Experiment Designation	Description ^b	Experiment Description	
		G5-B	PU-G5 Blank
PU-G5	10 ⁻⁴ M Pu(VI) in G-	G5-FE	PU-G5 with low carbon steel coupon
10.05	Seep brine at pC _{H+} 5	G5-FE2	PU-G5 with added Fe ²⁺
		G7-B	PU-G7 Blank
PU-G7 and	10 ⁻⁴ M Pu(VI) in G-	G7-FE	PU-G7 with low carbon steel coupon
PU-G7-NC	Seep brine at pC_{H+} 7	G7-FE2	PU-G7 with added Fe ²⁺
		E8-B	PU-E8 Blank
PU-E8	10^{-4} M Pu(VI) in ERDA-6 brine at pC _{H+} 8 and 10^{-3} M Carbonate	E8-FE	PU-E8 with low carbon steel coupon
		E8-FE2	PU-E8 with added Fe ²⁺
		E8-MGO	PU-E8 with added MgO powder
		E10-B	PU-E10 Blank
PU-E10	10^{-4} M Pu(VI) in ERDA-6 brine at pC _{H+} 10 and 10^{-3} M Carbonate	E10-FE	PU-E10 with low carbon steel coupon
		E10-FE2	PU-E10 with added Fe ²⁺
		E10-MGO	PU-E10 with added MgO powder
	E10NC-B	PU-E10-NC Blank	
PU-E10-NC	10^{-4} M Pu(VI) in ERDA-6 brine at pC _{H+} 10 with no added Carbonate	E10NC-FE	PU-E10-NC with low carbon steel coupon
		E10NC-FE2	PU-E10-NC with added Fe ²⁺
 a All experiments were performed at 30 ± 2 °C, with Pu-239, in a once-through nitrogen glovebox b pC_{H+}, is the measured pH corrected for ionic strength effects; pC_{H+} = pH_{measured} + 0.9 			

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

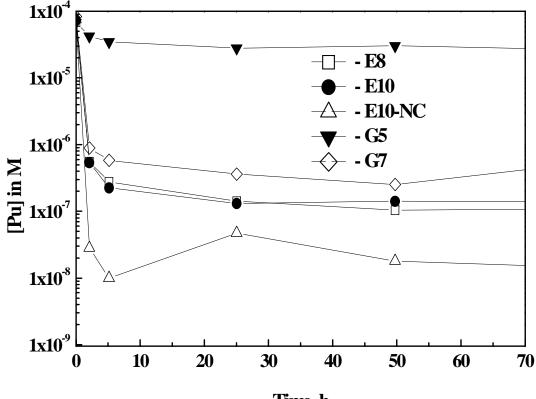
Concentration of Pu as a Function of Time, Brine Composition



UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

EXAFS/XANES of Reduced Pu Precipitates



UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Reduction of Plutonium (VI) by Fe²⁺

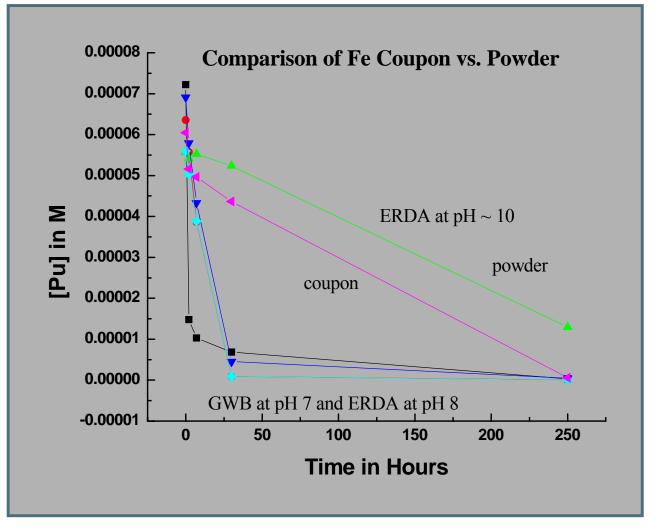
Time, h

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

LANL/ACRSP Study of Pu Reduction by Iron^(0,II)

- Very different appearances in iron reaction products were noted depending on pH, brine and initial iron phase
- Plutonium was associated with the Fe phases
- Green rust was often noted at the higher pH
- XANES established the green rust to be an Fe2/3 phase with a bromide center
- This green rust phase was linked to Pu as Pu(IV)


UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Reduction of Pu(VI) by Fe⁰

- At pC_{H+}7, 8 and 10 Pu(VI) reduction was observed
- XANES analysis confirmed Pu(IV) phases
- Noticeably slower reduction was noted at higher pC_{H+} due to significantly lower reactivity of the iron

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Reduction of Pu(VI) by Iron Oxides

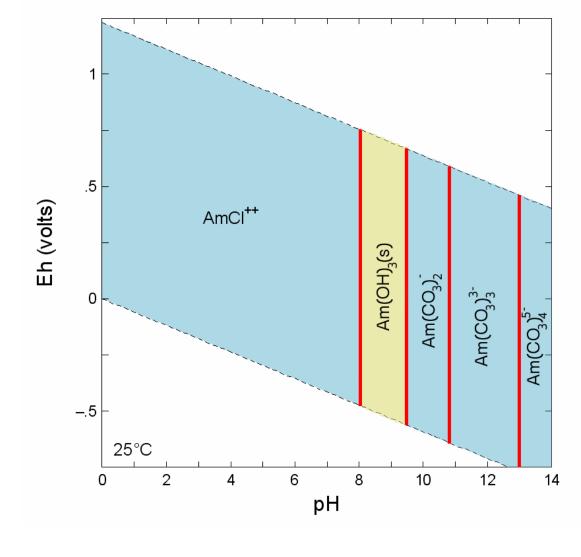
- Pu(VI) reduction was fastest when there was available Fe(II)
- ~ no reactivity noted with
 Fe(III) phases
 (as expected)

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Pu Solubility and Speciation in WIPP

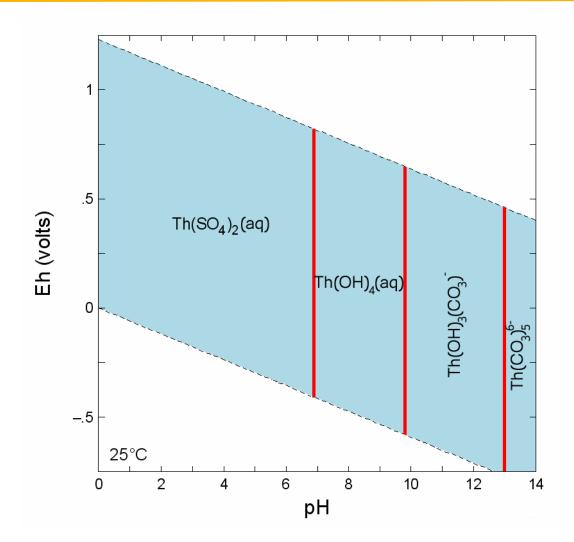
- Pitzer formalism
- Redox Assumption
- Use of oxidation state analogs
 - Nd(III) for Pu(III) or Am(III)
 - Th(IV) for Pu(IV)
- Pu solubility
- Pu species in WIPP



UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Predominant Species of An(III) in WIPP Brine Calculated for Am(III)

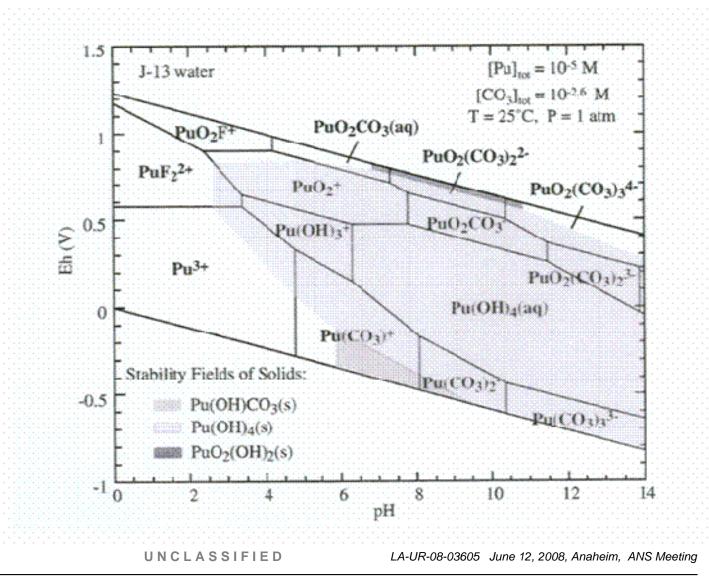


UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Predominant Species of An(IV) in WIPP Brine Calculated for Th(IV)

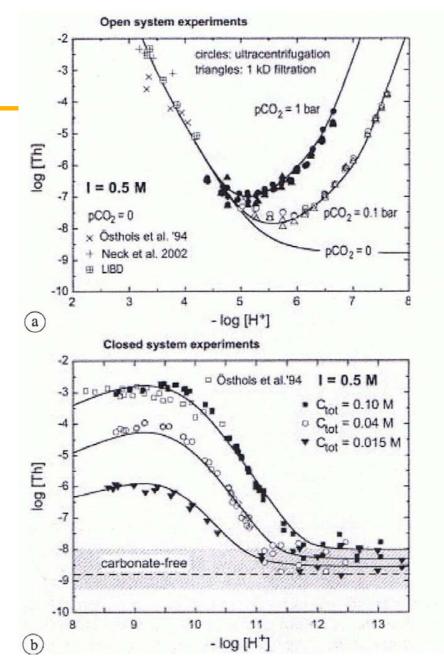
UNCLASSIFIED


LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Plutonium Phase Diagram

Runde et. al.

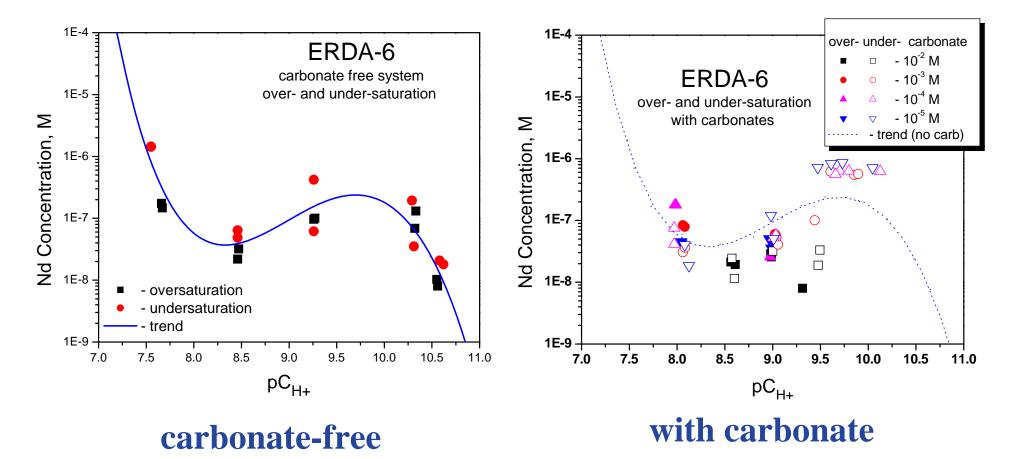
YMP work


Pu(IV) Solubility Measured by Analogy Using Th(IV)

Solubility of amorphous Th(IV) oxyhydroxide in the presence and absence of carbonate in 5 M sodium chloride as a function of pH. The solid lines are the calculated solubilities.

Altmaier et al. Radiochimica Acta, 93, 83-92 (2005)

Operated by Los Alamos National Security, LLC for NNSA



LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

UNCLASSIFIED

Pu(III) Solubility Measured by Analogy Using Nd(III)

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Solubility of An(III), An(IV) and An(V) Calculated Using Pitzer Formalism

Solubilities of the Oxidation State Analogs, in moles/liter,
with MgO Backfill calculated for PABC-2005

Prino	FMT	Actinide Oxidation		
Brine	Name	(111)	(IV)	(V)
GWB	hmag. w organics	3.87 x 10 ⁻⁷	5.64 x 10 ⁻⁸	3.55 x 10 ⁻⁷
ERDA-6	hmag. w organics	2.88 x 10 ⁻⁷	6.79 x 10 ⁻⁸	8.24 x 10 ⁻⁷

hmag. – hydromagnesite

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

Conclusions

- Salt-based repository, due to the self sealing mechanism, will become geologically insulated and saturated with brine in relatively short time.
- Corrosion of metallic containers (mostly iron) will consume oxygen and will maintain strongly reducing environment.
- Combination of anaerobic microbial activity and reaction with reduced forms of metals (Fe^{II,0}) will lead to reduction of higher oxidation states of plutonium. Pu(VI) and Pu(V) will be reduced to Pu(IV) and Pu(III).
- Carbon dioxide generated by microbes and pH~9 maintained by MgO, engineered barrier, will affect chemical speciation of Pu(III) and Pu(IV).
- Organic ligands (e.g. EDTA, citrate) may affect speciation and solubility of plutonium but this depends on the amounts of organics in the waste.

UNCLASSIFIED

LA-UR-08-03605 June 12, 2008, Anaheim, ANS Meeting

